TRACE ELLIOT # **SERVICE MANUAL** **DATE :** December 29, 1999 **Product Code:** N/A **Model Number:** GP12 200 watt series 6 Issued by: Trace Elliot Limited Blackwater Trading Estate The Causeway Maldon Essex England CM4 4GG #### TRACE ELLIOT SERIES 6 | | OUTPUT STAGE | | |---------|--------------|-------------------| | COUTTON | 6-2-89 | 344 HO:-
AH200 | ## **GP12 MAIN BOARD - COMPONENT PARTS LIST** | REF | PART NUMBER | | VALUE | i | REF | PART NUMBER | | VALUE | | |------------|--------------------------|--------------|---------------|----------|------------|---------------------------|-------------|--------------|----------| | R1 | 1610-RM10K | 10K | 1/4W | MF | R61 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R2 | 1610-RM10K | 10K | 1/4W | MF | R62 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R3 | 1610-RM220K | 220K | 1/4W | MF | R63 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R4 | 1610-RM1M | 1M | 1/4W | MF | R64 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R5 | 1610-RM560R | 560R | 1/4W | MF | R65 | 1610-RM4K7 | 4K7 | 1/4W | MF | | Ró | 1610-RM100K | 100K | 1/4W | MF | R66 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R7 | 1610-RM27K | 27K | 1/4W | MF | R67 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R8 | 1610-RM1K5 | 1K5 | 1/4W | MF | R68 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R9 | 1610-RM6K8 | 6K8 | 1/4W | MF | R69 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R10 | 1610-RM3K3 | 3K3 | 1/4W | MF | R70 | 1610-RM4K7 | 4K7 | 1/4W | MF | | RII | 1610-RM1M | 1M | 1 /4W | MF | R71 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R12 | 1610-RM1M | 1M | 1 /4W | MF | R72 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R13 | 1610-RM33K | 33K | 1/4W | MF | R73 | 16 10-RM4K7 | 4K7 | 1/4W | MF | | R14 | 1610-RM6K8 | 6K8 | 1/4W | MF | R74 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R15 | 1610-RM10K | 1 0 K | 1/4W | MF | R75 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R16 | 1610-RM33K | 33K | 1/4W | MF | R76 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R17 | 1610-RM2K2 | 2K2 | 1/4W | MF | R77 | 1610-RM4K7 | 4K7 | 1/4W | MF | | RIS | 1610-RM33K | 33K | 1/4W | MF | R78 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R19 | 1610-RM1K | ١ĸ | 1/4W | MF | R79 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R20 | 1610-RM10K | 10K | 1/4W | MF | R80 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R21 | 1610-RM10K | 10K | 1/4W | MF | R81 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R22 | 1610-RM10K | 10K | 1/4W | MF | R82 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R23 | 1610-RM10K | 10K | 1/4W | MF | R83 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R24 | 1610-RM10K | 10K | 1/4W | Mř | R84 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R25 | 1610-RM100K | 100K | 1/4W | MF | R85 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R26 | 1610-RM1M | 1M | 1/4W | MF | R86 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R27 | 1610-RM1K | 1K | 1/4W | MF | R87 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R28 | 1610-RM1M | 1M | 1/4W | MF | R88 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R29 | 1610-RM1M | 1M | 1/4W | MF | R89 | 1610-RM22K | 22K | 1/4W | MF | | R30 | 1610-RM4K7 | 4K7 | 1/4W | MF | R90 | 1610-RM47K | 47K | 1/4W | MF | | R31 | 1610-RM1K | 18 | 1/4W | MF | R91 | 1610-RM1M | 1M | 1/4W | MF | | R32 | 1610-RM4K7 | 4K7 | 1/4W | MF | R92 | 1610-RM1K | 1K | 1/4W | MF | | R33 | 1610-RM1M | 1M | 1/4W | MF | R93 | 1610-RM22K | 22K | 1/4W | MF | | R34
R35 | 1610-RM6K8
1610-RM6K8 | 6K8 | 1/4W | MF | R94 | 1610-RM47K | 47K | 1/4W | MF | | R36 | 16 10-RM560R | 6K8
560R | 1/4W | MF | R95 | 1610-RM4K7 | 4K7
100K | 1/4W | MF | | R37 | 1610-RM220K | 220K | 1/4W
1/4W | MF | R96
R97 | 1610-RM100K | - • | 1/4W | MF | | R38 | 1610-RM6K2 | 6K2 | 1/4VV
1/4W | MF
MF | R97 | 1610-RM560R
1610-RM47K | 560R
47K | 1/4W
1/4W | MF
MF | | R39 | 1610-RM100K | 100K | 1/4W | MF | R99 | 1610-RM22K | 22K | 1/4W | MF | | R40 | 1610-RM100K | 100K | 1/4W | MF | R100 | 1610-RM47K | 47K | 1/4W | MF | | R41 | 1610-RM56K | 56K | 1/4W | MF | R101 | 1610-RM47K | 47K | 1/4W | MF | | R42 | 1610-RM56K | 56K | 1/4W | MF | R102 | 1610-RM180K | 180K | 1/4W | MF | | R43 | 1610-RM100K | 100K | 1/4W | MF | R102 | 1610-RM180K | 180K | 1/4W | MF | | R44 | 1610-RM56K | 56K | 1/4W | MF | R104 | 1610-RM15K | 15K | 1/4W | MF | | R45 | 1610-RM100K | 100K | 1/4W | MF | R105 | 1610-RM10K | 10K | 1/4W | MF | | R46 | 1610-RM100K | 100K | 1/4W | MF | R106 | 1610-RM100K | 100K | 1/4W | MF | | R47 | 1610-RM100K | 100K | 1/4W | MF | R107 | 1610-RM22K | 22K | 1/4W | MF | | R48 | 1610-RM100K | 100K | 1/4W | MF | R108 | 1610-RM22K | 22K | 1/4W | MF | | R49 | 1610-RM47K | 47K | 1/4W | MF | R109 | 1610-RM33K | 33K | 1/4W | MF | | R50 | 1610-RM47K | 47K | 1/4W | MF | R110 | 1610-RM22K | 22K | 1/4W | MF | | R51 | 1610-RM10K | 10K | 1/4W | MF | RIII | 1610-RM10K | 10K | 1/4W | MF | | R52 | 1610-RM10K | 10K | 1/4W | MF | R112 | 1610-RM10K | 10K | 1/4W | MF | | R53 | 1610-RM4K7 | 4K7 | 1/4W | MF | R113 | 1610-RM1K | iĸ | 1/4W | MF | | R54 | 1610-RM4K7 | 4K7 | 1/4W | MF | R114 | 1610-RM10K | iok | 1/4W | MF | | R55 | 1610-RM4K7 | 4K7 | 1/4W | MF | R115 | 1610-RM3K3 | 3K3 | 1/4W | MF | | R56 | 1610-RM4K7 | 4K7 | 1/4W | MF | R116 | 1610-RM3K3 | 3K3 | 1/4W | MF | | R57 | 1610-RM4K7 | 4K7 | 1/4W | MF | R117 | 1610-RM10K | lok | 1/4W | MF | | R58 | 1610-RM4K7 | 4K7 | 1/4W | MF | R118 | 1610-RM220R | 220R | 4W | WW | | R59 | 1610-RM4K7 | 4K7 | 1/4W | MF | R119 | 1610-RM100K | 100K | 1/4W | MF | | R60 | 1610-RM4K7 | 4K7 | 1/4W | MF | R120 | 1610-RM10K | lok | 1/4W | MF | | | | | | | | | | - | | ### **GP12 MAIN BOARD - COMPONENT PARTS LIST** | REF | PART NUMBER | | VALUE | | REF | PART NUMBER | | VALUE | | |------|------------------|---------------|-------------|----|------|------------------|----------------|------------|----| | R121 | 1610-RM560R | 560R | 1/4W | MF | C54 | 1610-C4N7-100VE | 4n7 | 50v | М | | R122 | 1610-RM4K7 | 4K7 | 1/4W | MF | C55 | 1610-C33N-100VE | 33nF | 50v | М | | R123 | 1610-RM4K7 | 4K7 | 1/4W | MF | C56 | 1610-C3N3-100VE | 3n3 | 50v | M | | R124 | 1610-RM6K8 | 6K8 | 1/4W | MF | C57 | 1610-C22P-50VCD | 220pf | 50v | DC | | R125 | 1610-RM180K | 180K | 1/4W | MF | C58 | 1610-C22N-100VE | 22nF | 50v | M | | R133 | 1610-RM 100K | 100K | 1/4W | MF | C59 | 1610-C2N2-100VE | 2n2 | 50v | M | | | | | ., | | C60 | 1610-C220P-50VCD | 220pF | 50v | DC | | ÇI | 1610-CO.47-35VT | 0.47uF | 35v | T | C61 | 1610-C10N-100VE | 10nF | 50v | м | | C2 | 1610-C1-35VT | 1u5 | 35v | Ť | C62 | 1610-CIN-100VE | 1nF | 50v | М | | C3 | 1610-CIN-100VE | 1nF | 50v | М | C63 | 1610-C220P-50VCD | 220pF | 50v | DC | | C4 | 1610-C10-35VER | 10uF | 35v | RE | C64 | 1610-C6N8-100VE | 6n8 | 50v | M | | C5 | 1610-C100N-100VE | 100nF | 50v | M | C65 | 1610-C680P-63v | 680pF | 100v | P | | C6 | 1610-C10N-100VE | 1 0 nF | 50v | M | C66 | 1610-C100N-100VE | 100nF | 50v | М | | C7 | 1610-C10N-100VE | 10nF | 50v | M | C67 | 1610-C100P-50VCD | 100pF | 100v | P | | C8 | 1610-C1-35VT | 1u5 | 35v | Ť | C68 | 1610-C10-35VER | 100pr | 35v | | | C9 | 1610-C10-35VER | 100
10uF | 35v | ŔE | C69 | 1610-C10-35VER | 10uF | 35v
35v | RE | | Cio | 1610-C100N-100VE | 100nF | 50v | M | C70 | 1610-C10-35VER | 10uF | 35v
35v | RE | | C11 | 1610-C100N-100VE | 100nF | 50v | | C71 | | | | ŔĒ | | C12 | 1610-C22N-100VE | 22nF | 50v | М | | 1610-C3N3-100VE | 3n3 | 50v | М | | C13 | 1610-C1-35VT | 1uF | | M | C72 | 1610-CIN-100VE | InF | 50v | M | | C14 | 1610-C1-35VT | 1uF | 35v | Ţ | C73 | 1610-C22-35VER | 22uF | 35v | RE | | C15 | 1610-C1-35V1 | | 35v | Ţ | C74 | 1610-C1-35VER | luF | 35v | RE | | C16 | | 22nF | 50v | M | C75 | 1610-C1-35VER | luE | 35v | RE | | | 1610-C220-35VER | 220uF | 35v | RE | C76 | 1610-C4N7-100VE | 4n7 | 50v | M | | C17 | 1610-C100N-100VE | 100nF | 50v | М | C77 | 1610-C1-35VER | luF | 35v | RE | | C18 | 1610-C100N-100VE | 100nF | 50v | М | C78 | 1610-C330P-50VCD | 330pF | 50v | DC | | C19 | 1610-C100N-100VE | 100nF | 50∨ | M | C79 | 1610-C1-35VER | luF | 35v | RE | | C20 | 1610-C47P-50VCD | 47pF | 50v | DC | C80 | 1610-C1-35VER | 1uF | 35v | RE | | C21 | 1610-C47P-50VCD | 47pF_ | 50v | DC | C81 | 1610-C1-35VER | 1uF | 35v | RE | | C22 | 1610-C100N-100VE | 100nF | 50v | М | C82 | 1610-C10-35VER | 10uF | 35v | RE | | C23 | 1610-CO,47-35VT | 0.47uF | 35v | Ţ | C83 | 1610-C220-35VER | 220uF | 35v | RE | | C24 | 1610-CO.47-35VT | 0.47uF | 35v | Ţ | C84 | 1610-C220-35VER | 2 20 uF | 35v | RE | | C25 | 1610-C220P-50VCD | 220pf | 50v | DC | C85 | 1610-C220-35VER | 220uF | 35v | RE | | C26 | 1610-C2.2-35VT | 2u2 | 35v | T | C86 | 1610-C470P-160V | 470pF | 100∨ | Ь | | C27 | 1610-C1-35VT | 1u5 | 35∨ | T | C87 | 1610-C100N-100VE | 1 00 nF | 50v | М | | C28 | 1610-C22N-100VE | 22nF | 50v | М | C88 | 1610-C2.2-35VT | 2u2 | 35v | Т | | C29 | 1610-CO.33-35VT | 0.33⊍F | 35v | Ţ | C89 | 1610-C2.2-35VT | 2u2 | 35v | T | | C30 | 1610-C220P-50VCD | 220pF | 50v | DC | C90 | 1610-C22-35VER | 22 uF | 35v | RE | | C31 | 1610-C2.2-35VT | 2⊔2 | 35v | T | C91 | 1610-C220-35VER | 220 uF | 35v | RE | | C32 | 1610-CO.33-35VT | 0.33uF | 35v | T | C92 | ON FRONT BOARD | | | | | C33 | 1610-C220P-50VCD | 220pF | 50∨ | DC | C93 | 1610-C100N-100VE | 100nF | 50v | M | | C34 | 1610-C1-35VT | lu5 | 35v | T | C94 | 1610-C1000-63VEA | 1000uF | 63v | ΑE | | C35 | 1610-CO.22-35VT | 0.22uF | 3 5v | T | C95 | 1610-C1-35VER | ≀uF | 35∨ | RE | | C36 | 1610-C220P-50VCD | 220pF | 50v | DC | C96 | 1610-C4N7-100VE | 4n7 | 50v | М | | C37 | 1610-C1-35VT | 1uF | 35∨ | Ţ | C97 | 1610-C100N-100VE | 100nF | 50v | М | | C38 | 1610-C100N-100VE | 100nF | 50v | M | | | | | | | C39 | 1610-C220P-50VCD | 220pF | 50v | DC | TR1 | 1610-TBC549C | BC549C | | | | C40 | 1610-CO.47-35VT | 0.47pF | 35v | Ť | TR2 | 1610-TBC549C | BC549C | | | | C41 | 1610-C100N-100VE | 100nF | 50v | М | TR3 | 1610-TBC549C | BC549C | | | | C42 | 1610-C10N-100VE | 10nf | 50v | М | TR4 | 1610-TBC549C | BC549C | | | | C43 | 1610-C47-100VE | 47nF | 50v | М | TR5 | 1610-TBC549C | BC549C | | | | C44 | 1610-C220P-50VCD | 220pF | 50v | DC | TR6 | 1610-TBC549C | BC549C | | | | C45 | 1610-CO.33-35VT | 0.33uF | 35v | T | TR7 | 1610-T8C549C | BC549C | | | | C46 | 1610-C33N-100VE | 33nF | 50∨ | M | TR8 | 1610-TBC549C | BC549C | | | | C47 | 1610-C220P-50VCD | 220pF | 50v | DC | TR9 | 1610-TBC549C | BC549C | | | | C48 | 1610-CO.22-35VT | 0.22uF | 35∨ | T | TR10 | 1610-TBC549C | BC549C | | | | C49 | 1610-C15N-100VE | 15nF | 50v | М | TRII | 1610-TBC549C | BC549C | | | | C50 | 1610-C220P-50VCD | 220pF | 50v | DC | TR12 | 1610-TBC549C | BC549C | | | | C51 | 1610-C100N-100VE | 100nF | 50v | M | TR13 | 1610-TBC549C | BC549C | | | | C52 | 1610-C6N8-100VE | án8 | 50v | M | TR14 | 1610-TBC549C | BC549C | | | | C53 | 1610-C220P-50VCD | 220pF | 50v | DC | TR15 | 1610-TBC549C | BC549C | | | | | | | | | | | | | | | GP12 MAIN BOARD | - | COMPONENT PARTS LIST | - | FRONT BOARD | |-----------------|---|----------------------|---|-------------| |-----------------|---|----------------------|---|-------------| | REF | PART NUMBER | VALUE | REF | PART NUMBER | | VALUE | |-------|---------------------|-----------------------------------|-----------|-------------------------|-------------|---------------------------| | TR16 | 1610-TBC549C | BC549C | R126 | 1610-RM6K8 | 6K8 | 1/4W | | TR 17 | 1610-TBC549C | 8C549C | R127 | 1610-RM15K | 15K | 1/4W | | TR18 | 1610-TBC549C | BC549C | R128 | 1610-RM4K7 | 4K7 | 1/4W | | TR 19 | 1610-TBC549C | BC549C | R129 | 1610-RM15K | 15K | 1/4W | | TR20 | 1610-TBC549C | BC549C | R130 | 1610-RM220R | 220R | 1/4W | | TR21 | 1610-TBC549C | BC549C | R131 | 1610-RM220R | 220R | 1/4W | | TR22 | 1610-TBC549C | BC549C | R132 | 1610-RM1K5 | 1K5 | 1/4W | | TR23 | 1610-TBC549C | BC549C | | | | • | | TR24 | 1610-TBC549C | BC549C | C92 | 1610-C1035VEA | 10uF | 35v | | | | | | | | | | D1 | 1610-D-1N4148 | 1N4148 | Ρl | 1610-PRESET-4K7 | 4K7 | PRESET | | D2 | 1610-D-1N4148 | 1N4148 | | | | | | D3 | 1610-D-1N4148 | 1N4148 | SL1 - | 1611-SLIDER-S | 100K LIN | SLIDER | | D4 | 1610-D-1N4148 | 1N4148 | SL13 | | | | | D5 | 1610-D-1N4148 | 1N4148 | | | | | | D6 | 1610-D-1N4148 | 1N4148 | TR25- | 1610-TBC549C | BC549C | | | D7 | 1610-D-1N4148 | 1N4148 | TR29 | | | | | D8 | 1610-D-1N4148 | 1N4148 | | | | | | D9 | 1610-D-1N4148 | 1N4148 | L1 | 1610-LED GREEN | LED 5MM | GREEN | | D10 | 1610-D-1N4148 | 1N4148 | L2 | 16 10-LED-YELLOW | LED 5MM | YELLOW | | DII | 1610-D-1N4148 | 1N4148 | L3 | 1610-LED-RED | LED 5MM | RED | | D12 | 1610-D-1N4148 | 1N4148 | L4 | 1610-LED-RED | LED 5MM | RED | | D13 | 1610-D-1N4148 | 1N4148 | L5 | 1610-LED-RED | LED 5MM | RED | | D14 | 1610-D-1N4148 | 1N4148 | | | | | | | | | SWI | 1610-SW-D6 | | ER SWITCH | | ZDI | 1610-D-BZY88C15 | BZY88C15 | SW2 | 1610-SW-D6 | D6 PLUNG | ER SWITCH | | ZD2 | 1610-D-BZY88C33 | BZY88C33 | | | | | | 71 | 1410 704 NO DI | D. L. TO A MOCOON AND | MISCELLA | ANEOUS PARTS | | | | TI | 1612-TRANS-DI | D.I. TRANSFORMER | SLIDER CA | A D WHITE | 1605-CAP | CLIDE W | | IC1 | 1610-IL-TL072 | TL072 | SLIDER CA | | 1605-CAP | | | IC2 | 1610-IC-4066BPC | CD4066B | | NOB BLACK | 1611-RITEL | | | IC3 | 1610-IC-4011BPC | CD4006B
CD4011B | | NOB CAP RED | 1611-RITEL | | | IC4 | 1610-IC-4066BPC | CD40668 | | NOB CAP GREEN | 161 1-RITEL | | | IC5 | 1610-IL-TL072 | | | ASSIS PLUG | 1611-XLR-F | | | IC6 | | TL072 | FRONT O | | 1614-OLA | | | IC7 | 1610-IL-TL072 | TL072 | | VERLAY
TOH CAP WHITE | 1605-CAP | | | IC/ | 16 10-IL-TL072 | TL072 | | IN POT 500K | 1611-POT- | | | SW1 | 1610-SWF2UEE | LATCH PUSH SWITCH | | EVEL POT 50K | 1611-POT- | | | SW2 | 1610-SWF2UEE | LATCH PUSH SWITCH | I.C. SOCK | | 1600-SOC | | | 3112 | 10 10-344F20EE | DATCH PUSH SWITCH | | (ET 14 PIN | 1600-SOC | | | SK1 | 1610-HEADER-6W | OINT HEADED A MAY | LED REFLE | | 1605-LED-I | | | 361 | IO TOTALE ALCERTORY | PIN HÉADER 6 WAY | BD677 HE | | 1611-MS-G | | | Jī | 1611-JCK-BNBG | MONO JACK-BNB | DO01111 | C 11 WH 773 | 1011-140-0 | | | J2 | 1611-JCK-BNBG | MONO JACK-BNB | SYMBOLS | USED IN PARTS LIST | | | | J3 | 1611-JCK-BNBG | STEREO JACK-BBB | 011111010 | COLD III I MARIO EIO | | | | J4 | 1611-JCK-BNBG | MONO JACK-BNB | MF | | METAL FILM | A RESISTOR | | J5 | 1611-JCK-BNBG | MONO JACK-BNB | ww | | | IND RESISTOR | | J6 | 1611-JCK-BNBG | MONO JACK-BNB | M | | MYLAR CA | | | J7 | 1611-JCK-BNBG | MONO JACK-BNB | Ť | | | CAPACITOR | | J8 | 1611-JCK-BNBG | STEREO JACK-BBB | рС | | | AMIC CAPACITOR | | | TOTA BON DATES | STEREO SMOR-BBB | P | | | CAPACITOR | | JL1 | 1610-LINK-10W | JUMPER LINK 10 WAY | RE | | | ECTROLYTIC | | JL2 | 1610-LINK-10W | JUMPER LINK 10 WAY | AE | | AXIAL ELEC | | | 11.3 | 1610-LINK-10W | JUMBER LINK 5 WAY | | | | _ _ | | | | (CUT IN 2 PIECES) | | | | | | JL4 | 1610-HEADER-3W | PIN HEADER 3 WAY | | | | | | | | · - · · · · · · · · · · · · · · · | | | | | # PARTS LIST FOR PB200 POWER MODULES | Description | Part Code | Qty | Where Used | | | |----------------------|------------------|-----|------------|--|--| | RESISTORS | | | | | | | 100K 1/4 WATT | 72-RM100K | 1 | R8 | | | | 15K ¼ WATT | 72-RM15K | 1 | R16 | | | | 220R 1/4 WATT | 72-RM220R | 8 | R9-15 R19 | | | | 4K7 ¼ WATT | 72-RM4K7 | 3 | R2 R3 R5 | | | | 560R ¼ WATT | 72-RM560R | 1 | R6 | | | | 56K ¼ WATT | 72-RM56K | 2 | R1 R7 | | | | 68K ¼ WATT | 72-RM68K | 1 | R4 | | | | 10R 2.5 WATT | 72-RWW10R-2.5W | 1 | R17 | | | | 1K 2W PLUGABLE | 72-RWW1K | 1 | R18 | | | | CAPACITORS | | | | | | | 0.22μF 250V POLY BOX | 72-C0.22-250VP | 1 | C11 | | | | 1.5μF 35V TANT | 72-C1.5-35VT | 1 | C1 | | | | 100nF 250V POLY BOX | 72-C100N-250VP | 1 | C8 | | | | 10nF 100V MYLAR | 72-C10N-100VE | 1 | C7 | | | | 220pF 100V CER DISC | 72-C220P-100VCD2 | 1 | C2 | | | | 47μF 63V RADIAL | 72-C47-63VER | 2 | C4 C12 | | | | 47pF 100V CER DISC | 72-C47P-100VCD | 3 | C3 C5 C6 | | | | 4700μF 80V RADIAL | 72-CAP-470080V | 2 | C9 C10 | | | | SEMI-CONDUCTORS | | | | | | | 12V ZENER DIODE | 72-D-BZX55C12V | 2 | ZD3 ZD4 | | | | 39V ZENER DIODE | 72-D-BZX55C39V | 2 | ZD1 ZD2 | | | | GI 751 DIODE | 72-D-GI751 | 4 | D6-9 | | | | IN4148 DIODE | 72-D-IN4148 | 5 | D1-5 | | | | BUZ900 MOSFET | 72-MOS-BUZ900 | 2 | | | | | BUZ905 MOSFET | 72-MOS-BUZ905 | 2 | | | | | BF422 TRANSISTOR | 72-TBF422 | 2 | TR4 TR5 | | | | BF423 TRANSISTOR | 72-TBF423 | 3 | TR1-3 | | | | OTHERS | | | | | | | ISOLATION BUSH | 72-MOS-BUSH-WHT | 8 | | | | | ISOLATION PAD | 72-MOS-KOOL-PAD | 4 | | | | | 220R PRESET POT | 72-PRESET-220R | 1 | P1 | | | | MAIN HEATSINK | 71-HS-L200 | 1 | | | | Rik Daniels April 3, 1997 GP12/1 # **GP12 PREAMPLIFIER** The GP12 preamplifier is used in the following Trace Elliot Series 6 products: Amplifier Heads: AH200, AH300, AH500, VA400 Combo amplifiers: 1210, 1215 Rack Mount Equipment: GP12X #### **TECHNICAL SPECIFICATIONS** Inputs Passive Bass Impedance 100k Ohms Input Range 50mV to 10V (peak-peak) Active Bass Impedance 10k Ohms Input Range 100mV to 20V (peak-peak) Effects Return Impedance 50k Ohms Nominal Input Level OdBv (0.775v RMS) Line Input Impedance 50k Ohms Nominal Input Level 0dBv Outputs Effects Send Impedance 10k Ohms Nominal Level 0dBv Line Output Impedance 600 Ohms Nominal Level 0dBv Maximum Level +9dBv (7v RMS) DI Output 600 Ohms, Transformer Balanced Nominal Level 0d8v (Pins 2& 3) Equalisation Graphic +/- 15d8 at 12 centre frequencies Mid Pre Shape +6dB at 50 Hz and 2kHz, -6dB at 400 Hz Frequency Response -3dB at 22 Hz and 25kHz Signal/Noise Ratio Better than 80dB (EQ flate, Mid out) Distortion Less than 0.05% THD GP12/2 ## **GP12 CIRCUIT DESCRIPTION** #### INPUT J1/J2 J1 and J2 are the Instrument inputs to the GP12. A signal entering J1 is passed to the first stage via R2 with R1 in parallel. Resistor R12 is to decouple any D.C. appearing on the input to ground. A signal entering J2 is passed to the first stage via R1, again with R12 as a D.C. path to ground. This time however, R2 has one end connected to ground via the switched contact on J1. This provides a degree of attenuation to the "Active Bass" input J2 with the combination of R1 and R2 acting as a potential divider across the input. #### FIRST STAGE The first stage is made up of transistors TR1 and TR2. TR2 is an "emitter follower" stage to provide a low impedance output to feed the next stage (the Mid Pre Shape circuit). TR1 is the Input gain/attenuation stage with its level controlled by the "input Gain" pot. Gain is achieved by moving the pot's wiper toward the input and attenuation by moving the wiper to the opposite end, providing negative feedback from the collector to the base of TR1. The supply to this first stage comes in via R8 and is decoupled with C4 to prevent any power supply noise from reaching this sensitive input circuit. C3 is to bypass any high frequency noise and prevent radio breakthrough, etc. #### MID PRE SHAPE The combination of C5, C6, C7 and C96, along with resistors R13, R14 and R16 form a "Band Reject" filter. This provides a "Mid Cut" to any signal passing through It. The filter is buffered by one half of IC1. The "Mid Pre Shape" switching is performed by IC2 and an analog switch on the input to the second half of IC1. By closing one of these switches either the "Straight" sound via R15 or the "Pre Shaped" sound via R17 may be selected. These two resistors also set the gain of the following stage with a greater gain being provided by the smaller value of R17. As this is in the output from the "Pre Shape" circuit it provides a "Top" and "Bottom" boost as well as a "Mid" cut to the "Pre Shaped" sound. As long as the D.C. voltage on the input to the analog switches is the same, the switching will be click free. This voltage is provided from the emitter of transistor TR2. #### THE GRAPHIC SECTION The graphic equalisation section is configured around IC5. The input signal comes from the output of IC2 Pin 7 via R45 into the first half of the graphic. The graphic is split into two halves with each covering six frequency bands. The signal from the first half (IC5 Pin 1) is passed to the second half by resistor R48. Each frequency band of the graphic is composed of one transistor, two capacitors and three resistors, forming a resonant circuit. Taking the 10kHz band as an example, the transistor is TR20, the resistors are R83, R84 and R85, and the two frequency determining capacitors are C61 and C62. GP12/3 This circuit presents a low impedance to the slider of the graphic pot SL11 at its 10kHz centre frequency. Thus, moving the slider down reduces the amount of signal at this frequency reaching Pin 5 of IC5 (the non-inverting input) producing a "Cut" at 10kHz, whereas moving the slider up reduces the amount of feedback via R47 back into Pin 6 of IC5, increasing the gain at 10kHz, producing a "Boost". The 220pF capacitor C60 is included to increase the stability of the resonant circuit. The two 47pF capacitors C20 and C21 help to prevent any high frequency oscillation or R.F. pick-up. The output of the graphic stage comes from IC5 Pin 7 and is fed back into the Graphic/Flat balance control circuit, #### **GRAPHIC/FLAT BALANCE CIRCUIT** The signal from the graphic stage is fed into the circuit via C23 and R49 to one end of the Graphic/Flat balance slider. The other end of the slider is fed with the signal from the "Mid Pre Shape" circuit IC1 Pin 7. The wiper of the slider goes to ground so that moving the slider from one end to the other will attenuate either the signal from the graphic or the signal from before the graphic, allowing a balance between these two signals to be set. The output from this circuit is via R51 and R52 and is at the correct level to go to the effects send socket. #### **GRAPHIC IN/OUT SWITCHING** C88 and C89 connect the signals from either end of the balance slider into the two analog switches. Closing one or other of these will short out any A.C. signal present to ground allowing through only that signal which has not been shorted – ie. It selects the signal from either before or after the graphic stage, thus switching the graphic in and out. The other side of the analog switches are connected to ground as far as A.C. is concerned by capacitor C90, but are actually blased up to a D.C. voltage of 7.5 volts. This is necessary to allow the analog switches to function correctly. #### **NOISE REDUCTION** The signal from IC1 Pin 7 is fed via C66 and R89 into the first half of IC6 where it is boosted in level. R90 feeds this signal to the non-inverting input of a comparator stage, with the threshold of the comparator being set by the potential divider R92/R93 supplying a fixed level to the inverting input. Each time the signal from R90 goes above this threshold, the output on Pin 7 swings from -ve supply to +ve supply. This biases on transistor TR23 which in turn discharges capacitor C69 quickly via R97. Once translator TR23 has turned off, then C69 will slowly recharge via R96. This charging and discharging of C69 brings the noise reduction "In" and "Out" in the following way. The dlode chain D8 to D13 will normally appear as an open circuit to A.C. signals unless it is forward blased, when It appears as a short circuit. As C69 slowly charges up, It also charges up C70 via R99. This rising voltage gradually forward blases the dlodes and when the noise reduction switch is closed, this will add a progressive "Top" cut by putting C74 directly across the signal path. However, when C69 quickly discharges, this instantly removes the effect of capacitor C74, removing the noise reduction. It can be seen from this description that the noise reduction comes in gradually when no signal is present and is removed instantly as soon as any signal is present at the input. GP12/4 #### SIGNAL LEVEL INDICATION Translators TR7, TR8 and TR9 are fed from three separate points throughout the GP12. These three translators then combine to feed the level indication circuit. In this way, the level is monitored at all the critical points in the GP12 ensuring that clipping or distortion cannot take place without the level indication circuit detecting it. The combined output of these three translators is a varying D.C. voltage that is developed across capacitor C92, feeding the voltage divider chain of R126, R128 and P1, with P1 adjusting the point at which the red "Overload" LED comes on. When the voltage across C92 reaches a high enough level, it will bias on translator TR25, lighting the "Increase Gain" LED. As the voltage increases, it will bias on translator TR26, lighting the "OK" LED. This will also cause the translator TR28 to be turned off, making the "Increase Gain" LED go out. As this voltage again increases, the "Overload" LED will be lit by translator TR27 and the "OK" LED will be turned off by TR29. #### THE OUTPUT STAGE The signal from the "Effects Return" socket is passed via C75 and R105 to the first half of IC7. This stage has a gain of 10 in order to return the signal back to line level. This then feeds the "Output Level" pot and the "Post EQ" D.I. stage. C76 and R125 are for high frequency compensation purposes, with C80, C95 and R123 forming a "High Pass" filter to set the low frequency roll off for the pre amp output. R111 and R112 form a potential divider across the supply for biasing up IC7 to half this voltage. C82 decouples this half supply point to ground. The "Output Level" pot sets the level of signal passed to the final stage, formed around the second half of IC7. This feeds the "Une Out" socket as well as the signal output to the PCB connector socket. The "Une input" socket feeds into the non-inverting input on this op amp (Pin 3) to be mixed with the pre amp signal. C78 sets the high frequency limit of the output from the GP12 and R109 sets the gain of this final stage. #### PREAMP SUPPLY REGULATION The supply voltage comes into the GP12 PCB on connector Pln 4. This voltage is dropped across R118 to a suitable level for the regulator transistor TR24. C94 helps to smooth out any ripple on the incoming supply. TR24 (the BD677) is working as a series regulator with its output voltage being set with a 33 volt zener diode in its base. The voltage across the zener diode is provided by resistor R117, with any noise produced by the the zener being decoupled by C83. The output voltage from the regulator is dropped across the potential divider R115 and R116 to provide a half supply reference to the op amps in the preamp. C84 and C85 hold this voltage stable. #### D.I. PROTECTION CIRCUIT. The D.I. switch selects the signal from either before the graphic but after the "Mid Pre Shape" (Pre EQ), or from after the graphic and after the Effects Return (Post EQ), This signal is passed to the D.I. drive transistor TR22. This directly drives the transformer T1 to provide the balanced and isolated D.I. output. R103 and R103 blas the transistor base to half supply, R104 sets the D.C. conditions on the emitter, C72 is high frequency bypass and C73 couples the AC signal through to drive the transformer. GP12/5 #### GRAPHIC AND PRE SHAPE SWITCHING Both the graphic and the pre shape switching circuits operate in the same way. Taking the graphic switching as an example, we have two of the NAND gates of IC3, one analog switch from IC2 and a transistor TR4 that form the actual switching circuit. TR6 is there to turn on or off the status LED on the pre amp and in the foot switch. The supply to the switching circuit is zenered down to 15v by ZD11. This also provides the supply to IC2 and IC4, the analog switches. On power up, capacitor C14 will be in a discharged state and will hold the voltage on Pin 3 of IC13 low. This will mean that the output on Pin 11 is high, which is in turn connected to Pins 8 and 9, resulting in Pin 10 being low. Pin 10 is connected back via R31 to Pin 12. Pin 11 (high) is connected via R32 to the base of Transistor TR6. This transistor will turn on, lighting LED L4 and the LED in the foot switch if connected. By the time C14 has charged up, circuit conditions will have stabalised. This ensures that the circuit always comes on in a known condition – graphic in, pre-shape out. The switching over of the circuit is accomplished every time the analog switch IC2 (Pins 8 and 9) is closed. From our initial condition, Pins 8 and 9 of IC3 are high. This will charge up the capacitor C15 via R33 making Pin 8 on IC2 high also. Closing the analog switch takes Pin 12 of IC3 high and, as Pin 13 is already high, then Pin 11 will go low, Pins 8 and 9 will go low and Pin 10 will go high, holding Pin 12 high and maintaining the conditions. The circuit has now changed state and LED 4 will go out as TR6 turns off. Pins 8 and 9 are now low so C15 will be discharged via R33. Pin 8 on IC2 will also be low so that when the analog switch is again closed, the circuit will change back to its initial state. The analog switch is operated by transistor TR4, the base of which is held high by R23. Its collector will therefore be low. However, when push button SW1 is closed, this pulls the base of TR4 down via D4 to 0.6 volts – the same as the voltage set on its emitter by diode D1, thus turning TR4 off. The collector of TR4 will go high closing the analog switch and, as we have previously seen, this will change the state of the circuit. The same will occur if the foot switch is operated. The LEDs in the foot switch and on the front panel of the GP12 are In fact in parallel and have 220 Ohm resistors In series with them to ensure even brightness.